Understand the data mining lifecycle (CRISP-DM, SEMMA)
Learn preprocessing techniques: missing values, encoding, normalization
Explore sampling and feature selection strategies
Set up your toolkit: Python, Pandas, Scikit-learn, Seaborn
Visualize data distributions, correlations, and outliers
Apply basic unsupervised techniques (k-means preview, PCA)
Tools: Python, Pandas, Scikit-learn, Jupyter, Seaborn, NumPy
Focus: Preprocessing • Foundations • Tool Setup